
Sam Bilbow
11/05/2017

Weather Synth
Project Journal 

Project Journal, Page �1

Sam Bilbow
11/05/2017

Weather Synth
Foreword

Ever since the Interactive Music Systems module, I have had a deep interest using
VPLs (visual programming languages) to create systems that create music out of
interesting and unusual data, data that you wouldn't normally attribute music to.
After being shown a CNMAT Max patch created by Michael Zbyszynski that
interprets XML weather data, I decided to focus on the weather as it is something
that constantly changes over time and is never exactly the same in two places. My
patch downloads, parses and then uses Logic Pro X (eventually the patch will be
self sufficient audio-wise) to synthesise weather data from an online API. The
different weather conditions affect different parameters on the synthesiser. Below is
my development process.

Development : Downloading

From the start of this project, I wanted to
create a live installation device that played
music continuously whenever it was turned
on. I started my patch by using the
Michael’s Max patch that was created to
interpret US weather stat ion data.
Originally, I had a lot of trouble decoding
the objects that were being used as I had
never used them. I got around this by going through the patch cord by cord and
learning what each section of the patch did. I singled out the part that
downloaded the XML data and edited it to download from OpenWeatherMap, the
weather API service that I signed up to for this project. One inherent downside to
my patch is that the weather is delayed by 2 hours due to me not paying for their
premium service ($180-$2000/month). I don't view this as a downside to the
listening experience, it is just something that the end-user has to consider.

Project Journal, Page �2

Original patch by Michael

Sam Bilbow
11/05/2017

Getting the patch to download the weather XML files from the OpenWeatherMap
API service was the easiest part of the project, the difference between mine and
Michael’s subpatch are shown below:

In my iteration, the user types in the city they want to download the weather for. It
comes through the subpatch inlet and is substituted in the “%s” of the API call in
the red highlighted object. Once the patch has downloaded the XML file
containing the weather, and names the XML file “%s”, where “%s” is the city name.
For example, if the user types in London, the patch downloads the weather for
London, and calls the file “London.xml”. The patch then reads the file “%s.xml”, and
its contents are passed through the outlet of the subpatch.

After having successfully made a patch that gets the XML file in the root folder of
the project, I needed to get to the point where the patch could parse the
information in the XML file. Below is a screenshot of the raw XML file.

Project Journal, Page �3

Michael’s download subpatch Weather Synth’s download subpatch

Raw XML file

Sam Bilbow
11/05/2017

Development: Parsing

The XML was completely un-formatted, with a
completely different tree hierarchy from the the
US weather XML files used in the original
weather reading patch. This was the hardest part
of the project, as I’d never worked with XML at
this level before. After about 2 weeks of trying, I
finally found a way of parsing the XML into Max
message boxes. On the right is one of the XML
parsing abstractions. The weirdness of the un-
formatted XML files made it hard to make this
part of the process look as neat as the others. All of the parsing happens in the
[Weather_Parsing] abstraction. For the actual parsing, I use an external made by
$Adam, a user on the Cycling ’74 forums, called sadam.rapidXML. At this point in
the project, I took a break from the technical side of patching to focus on the GUI
development side of the patch.

Project Journal, Page �4

Parsing sub-subpatch

Sam Bilbow
11/05/2017

Development: GUI I

Below is the patch at this stage in the development, it was at this stage where I
started focusing on visuals, not only for the end-user but also not to confuse myself
when working on the project. I made use of the presentation mode in Max to
toggle between seeing behind the scenes and seeing what the user would see.

Project Journal, Page �5

Patch before I started working on GUI.

Sam Bilbow
11/05/2017

Above is the presentation patch after I worked on the GUI for about 2 days, I
brought the weather data in to the main patch, as I thought the user would like to
see as well as hear the weather. The user can click on some preset cities as well as
type any town or city in the UK into the selected city field. I added a last pinged
and last updated timer, the last updated timer comes from the XML, and is the
latest weather data. Originally it was in the format of “YYYY-MM-DD T HH:MM:SS”
but using the jasch external object [strcut], I isolated the hours and minutes as they
are what are most important for the user. The last pinged time is the last time a
request was sent to the API server by the user.

Project Journal, Page �6

Version 4 GUI

Sam Bilbow
11/05/2017

Development: Synthesiser

After working on the GUI for about a week, I
started work on the synthesiser. This was the
most creatively challenging part of the project. I
had to come up with musical features that lent
themselves to weather conditions. This is the list
I came up with originally:

Oscillator: Current Temperature

Filtering: Low-pass filter controlled by average humidity/visibility

Panning: Stereo panning effect controlled by wind bearing

Speed: Speed of oscillator arpeggio/scale set by wind speed

Effects: Rain affects delay? Cloudiness affects phaser?

EQ: Latitude affects EQ? Warm south, colder north?

Amplification: Time of day affects volume level of patch

I decided this was a lot of effects to add into the patch, so I settled with the
following.

Oscillator: Current Temperature chooses scale, tempo is set by the wind speed

Effects: Wind speed also effects the speed of the LFO of the phasor effect in Logic

Filtering: Low-pass filter controlled by average humidity/visibility

Amplification: Time of day affects volume level of patch

Panning: Stereo panning effect controlled by direction of the wind (bearing)

Project Journal, Page �7

Paper notes on parameters

Sam Bilbow
11/05/2017

Oscillator

Above is the oscillator subpatch, [p Temperature]. Inlet 1 is current temperature.
The temperature goes into the select object, where 0-5℃, 5-10℃, 10-15℃,
15-20℃, and 20-25℃ each trigger different MIDI scales/modes in the yellow
section. The sequencer in the blue part of the patch is controlled by Inlet 2, which
sets the clock. The scale object scales 0-20 miles per hour wind speed between
180 and 90 milliseconds.

The output of the patch goes to the
MIDI port “from Max 1” Which is then
picked up in Logic Pro X. Which plays
the notes through a synthesiser I created
in the stock Alchemy plugin. It then
comes back into the Max patch via
[ezadc~] and carries on through the
signal path.

Project Journal, Page �8

[p Temperature] Subpatch

Logic Pro X Project

Sam Bilbow
11/05/2017

Effects

In the [p LFO] subpatch, the windspeed is sent to Logic via the “from Max 2” port.
The windspeed (0-20mph) is scaled to 0-40 in MIDI. In Logic, I have set up a
default controller assignment which affects the LFO of the phasor effect on the
synthesiser. This is to give the sound a more hectic feeling if it is very windy, and a
more slow, cyclic rhythm if it is a gentle breeze.

Filtering

The filter was the first idea I had for the musical side of the patch.
When I looked over the weather conditions that I would be
dealing with (e.g. temperature, cloud cover, sunset etc), I
immediately saw a connection between humidity and the idea of
a low pass filter - the concept being that if it was more humid,
and there was less visibility, the patch would sound dampened
and the frequency range would be reduced. I carried this out by
scaling the humidity and visibility to 0 - 20,000Hz and taking the
average and putting the result into a low pass filter

Project Journal, Page �9

[p LFO] Subpatch Logic Pro X Controller Assignment

Filter section of [Weather_Synth]

Sam Bilbow
11/05/2017

Amplification

One of the last ideas I had with the patch was to
implement a dynamic range of sorts. I did this
by separating the HH component of the
‘lastupdated’ XML element (the hour that the
weather data was taken from) with [strcut]. I then
passed it though a select object, and made time
brackets:

10pm - 7am is 0.25x volume level

7am - 10am and 8pm-10pm is 0.5x volume level

10am - 12pm and 5pm - 8pm is 0.75x volume
level

1pm - 5pm is full volume level

Project Journal, Page �10

[p Amplification] in [Weather_Synth]

Sam Bilbow
11/05/2017

Panning

The last feature I implemented into the patch in the development stage was the
stereo panning. The idea was to create a sense of wind direction if the user was
wearing headphones or using stereo speakers. The [p Stereo Spread] subpatch is
responsible in doing this. The subpatch contains 13 expressions, which sorts the
current wind bearing (coming through inlet 1) into whichever expression is correct.
If the wind blows from the east at 90°, the expression [if ($i1 >= 80) & (%i1 <= 100)
then b] will output a bang, which output 127 from the patch, this then goes into
the right inlet of the [pan2] object tin [Weather_Synth] which sets the
corresponding volume levels for L and R output.

Project Journal, Page �11

Panning section of [Weather_Synth]

Behind the scenes in [p Stereo Spread]

Sam Bilbow
11/05/2017

Development: GUI II

The final part of the project was working on the GUI to a point where I would be
comfortable with someone else using the patch. Below is a screenshot of the GUI
in the final version (5). Also shown are some features that I added to make the user
experience more engaging.

Project Journal, Page �12

Clearer map
Clearer font
patch wide Autoping Function

Synth On/Off and
Levels

Sleek looking
spectroscope

Starkly different
presets for

demonstration

Colour grouped weather
conditions, removed

unnecessary conditions

Sam Bilbow
11/05/2017

End note

The Weather Synth does have some errors. After some time open, the console will
report the error “expected <“. I’ve been aware of this for some weeks now, but
have no idea why it occurs. I have narrowed it down to the parsing process but do
not know how to get rid of it. After testing the error, it does not affect the sound in
any way. During early development, the patch was getting errors pretty frequently,
and at the time I didn't know why. It turned out it was because I wasn't allowed to
ping the API more than 60 times an hour on my free subscription with
OpenWeatherMap, this was solved by restarting the app, but it was nevertheless
very annoying when I didn't know the source of the error. Currently, this error still
occurs, but if the user does not ping the server more than 60 times in an hour then
the patch behaves.

The [Weather_Synth] subpatch contains a delay and reverb function that I plan on
developing in the future. The reverb happens to distort and glitch the sound at the
moment, which I quite enjoy the sound of, so I have left it in. The delay is turned off
by default currently.

In the future, the patch will be completely self sufficient, with an in-patch
synthesiser instead of relying on Logic Pro X. The audio routing is shown below.
Eventually, the patch will use Miraweb to be browser based. Also, the patches
directories will be more neat, unfortunately I did not think of this at the start of the
project, and every attempt I’ve done to tidy it up has resulted in the patch
breaking.

N.B. You will need the Jasch and $adam external libraries to run this patch.

Max

Out: Audio Interface -> Speakers

In: Soundflower (Or similar audio routing software)

Logic

Out: Soundflower (Or similar audio routing software)

In: N/A (Doesn’t affect the patch)

Project Journal, Page �13

