
 

CONTEXTUALISING ESSAY FOR THE MOBILE SYNTHESISER

GESTUR.A
Candidate Number: 196484
Module Name: Interactive Project Dev.
Module Code: 871P4
Academic Year: Spring 2019

INTRODUCTION
Gestur.a is an interactive musical synthesiser app, built for iOS. It is currently in the iterative
prototyping stage. The synthesiser is controlled by a mixture of different affordances - user
gestural motion, on screen touch parameters, and the microphone. The purpose of the app is to
give users the ability to make expressive music with their iPhone in an easy and intuitive way, and
to be a platform where they can share these compositions with friends and collaborators.
Gestur.a is built in Xcode, using the LibPD framework to connect with PureData - the open source
visual programming language that it uses for audio processing and synthesis.

This is an ongoing project, and this essay aims to contextualise the project in the field of music
technology and instrument / interactive design and provide a rationale for, and a description of,
the development to date. 

THEORETICAL BASIS
DESIGN AND PROTOTYPING

Moggridge writes in Designing Interactions
about several different methods for design
research when prototyping. Figure 1
classifies these methods into macro and
micro techniques, and techniques that result
in the understanding of either explicit or
latent needs of users. He explains that if
your goal is innovative design, then
understanding implicit actions and desires
of users can be obtained through doing
rather than saying (Moggridge 2007). This is

the reason I decided to include observational techniques as well as video ethnography (for
statistical analysis of gestures) in the user tests of gestur.a as “it is essential to the success of
interaction design that designers find a way to understand the perceptions, circumstances,
habits, needs, and desires of the ultimate users” (Suri, 2005). Gestur.a engages with Moggridge’s
hierarchy of design disciplines in order to understand the design constraints from a users
perspective (see Appendix 1).

NEW MEDIA STUDIES

New media theorist Lev Manovich argues that cultural interfaces (human computer interfaces that
portray cultural data: texts, images, video, music etc) such as my own gestur.a app, ascribe
themselves with a new media language (Manovich, 2001). This language is “largely made up of
other, already familiar cultural forms”. This is the theory that new media forms take part in a
mimesis of sorts - copying traditions and mechanisms of previous media forms, or, “remediation”
(Bolter and Grusin, 2000).

Understanding how I am engaging with remediation when developing a digital instrument is
important if the goal is trying to make meaningful interactions. Magnusson argues “instruments
that are remediations of the known into the digital medium” are largely associated with the late
20th century (Magnusson, 2019). With the speed of technological evolution, contemporary efforts
to understand digital organology and the design of meaningful digital instruments must
therefore go beyond simple remediations.

Fig.1 Design research methods (Moggridge, 2007)

If the use of digital computers in the twenty-first century is beginning to express its
unique character, it would be through their algorithmic nature, the ease of
automation, dynamic mappability, and not least, the profound potential of machine
learning.” (Magnusson, 2019)

Joel Ryan, researcher and collaborator at STEIM (Studio for Electro Instrumental Music), writes in
1991 about the problems encountered in performing computer music. He argues that
performers of computer music experience a large mediating distance between themselves and
the instrument due to complex and unintuitive ‘mappings’ a lack of intuitive physicality. He
proposes several solutions, one of which he calls “physical handles on phantom models”:

“The physicality of the performance interface helps give definition to the modelling
process itself. The physical relation to a model stimulates the imagination and
enables the elaboration of the model using spatial and physical metaphors. The
image with which the artist works to realise his or her idea is no longer a phantom, it
can be touched, navigated and negotiated with.” - (Ryan, 1991)

Ryan recognises the possibility for gestures to have a positive effect on a ‘phantom’ (digital)
musical model arguing that it allows for the “expansion of possibilities of communication with the
model” (Ryan, 1991).

GESTUR.A
TECHNICAL SUMMARY
I originally had the idea of a gestural smart-phone based synthesiser in 2017 while engineering
the GloveDuino, my glove-based gestural composition and performance tool built on Arduino
and PureData. One of the main issues with this system was its dissemination - though it offered
much more fine-grain control of musical parameters through flex sensors on the fingers of the
user, the device was expensive and therefore practically non-replicable, not to mention that
Imogen Heap’s mi.mu gloves had already achieved a similar controller (Heap, 2012). Where a
mobile app compromises on control, it makes up for in the fact that it allows the concept to be
shared via the ‘app’ for much less than a physical instrument, it also has a speaker built in which
gives the the ability to make it a fully contained digital instrument.

Gestur.a is ‘written’ in a combination of three languages. At the GUI and sensor level it is written
in Swift 5 through Xcode, Apple’s proprietary development environment for programming their
devices. This gives me access to device motion sensors and the ability to craft a custom GUI. The
LibPD framework interactions are written in Objective-C. This code allows mapping of Swift GUI
objects and sensor activations to objects ‘written’ in the PureData language. I say ‘written’

because PureData is a visual programming language, where code is assembled through the
visual patching of objects to other objects, much like a modular synthesiser, which is a quaint
lyricism in itself; considering the purpose of the code that I’m writing.

Early development choices included the name ‘gestur.a’ - coming from the Latin “gesturā” a
declension of the verb “to bear, carry, or wear” (Du Cange, 1883). I think this enforces the notion
that the smartphone is truly taking on the form of an embodied and interactive instrument.

PROTOTYPING
Figure 3 shows an early prototype of gestur.a, it had no gesture control, but was my original
attempt to learn how to use LibPd, Xcode, and PureData together. Users could use sliders on the
screen to affect the pitch of two static musical notes that they could turn off with another button.

It was after this rudimentary prototype that I decided to form the research studies that would
effect next stages of
development. I knew that I
wanted the device to emit
sound when users made
certain gestures whilst
holding the device, what I
needed to find out was what
gestures would be
comfortable (both physically
and in terms of how a user
would look doing it) and
suitably expressive for the
corresponding auditory
feedback. I planned to have

Fig.2 Gestur.a software architecture

Fig.3 Early prototype gestur.a and functioning PureData patch

2-3 weekly user tests, where I would video the test, and capture sensor logs from the device
whilst in motion. This would allow me to set up suitable values for the sensitivity for triggered
sound effects or musical notes. It would also allow me to ask participants about the intuitiveness
of the system and the gestures, and query them on more gestures that they felt were comfortable
and suited a variety of sounds.

The core logic of gestur.a at the current time of writing is as follows, where the lists show current
possibilities of mappings and threshold operators:

This allows for fairly simple mappings. Figure 4
is the associated PureData patch and prototype
app for user testing. This version of the
prototype plays three chords that are
dependent on motion gestures. The
corresponding code looks something like this:

This code sends the notes 60, 64 and 67 (in
MIDI note values this is C Major) to the patch
which then plays a chord comprised of those
notes if the user rotates the device past an
angle at a force (the value of this threshold is
12).

‘Gestur.a measuring grounds’ (a secondary
view that is accessed with the ‘measurements’
button on the main view) gives me access to
real time values of all the device motion axes,
this is helpful for rapidly prototyping
threshold values to be more or less sensitive.

Fig.4 Current prototype with 2 views and Pd patch

if (deviceMotion.rotationRate.x > 12)
 {
 patch?.chordTrigger(60,64,67)
 }

The capture motion button “hold me”,
when held, prints a steady stream of
values from all sensors to my developer
console. From here I can paste the data
into a template spreadsheet that I have
made that automatically makes graphs
from the data, which allows me to find
trends and preferred threshold values in
participant motions (Figure 5).

My user tests involve a 5 minute
introduction to the system which includes
a small briefing about the test. This is
followed by allowing the user to explore
the app’s sounds, gestures and parameters. I interview the participant about their experience
during this time, about the UI, control scheme, and sound quality. After this, I asked the
participant to record gestures whilst listening to some audio recordings of existing instruments.
This data will be useful in expanding the voice variety of gestur.a. I am however aware of the
danger of simply remediating existing instruments.

After my first round of user tests, I already had valuable feedback on how to improve the
interface, control system, and sounds of gestur.a. Figure 6 shows some of the testing ground UI
changes.

The Pd patch underwent changes too, users can now let notes ring for up to 60 seconds, allowing
them to create longer and richer soundscapes. I added a second oscillator to the system
meaning that the chord’s voice is no longer a simple sine tone, but a blend between a sine and
sawtooth wave, this makes the sound more harmonically rich and slightly distorted. With the

Fig.5 Testing graphs with participant motions

separated into
categories

arbitrary numbers
removed and replaced

with values

Fig.6 UI changes from first round user tests

confusing looking

numbers are
arbitrary

badly placed
capture motion
button

addition of the sawtooth wave (which can sound quite raspy at higher frequencies) I decided to
add a filter (this effectively turns down the volume of frequencies above a certain threshold
frequency called “cutoff”). I assigned this in real-time to the iPhone’s roll value. I show this in more
depth in the video demonstration attached. This motion adds another facet of user control - a
feature that was heavily requested during the user-tests. Figure 7 shows the new Pd patch with
the filter highlighted (compare to Figure 4 patch).

Fig.7 Revamped patch from first round user tests

FUNDING AND THE FUTURE OF GESTUR.A

I’m currently investigating ways of giving pitch control to the user, so that they can change the
chords that are played through gesture. I plan
on releasing a Kickstarter campaign for
gestur.a later this year to fund research and
development of the project in three key
areas. The reason I’ve chosen kickstarter is
because on my stakeholder map, they are the
funding body that would allow me to keep
full control of the development, but also
engage with funders who would be the most
interested in the development (see Figure 8).
I plan for gestur.a to be released in mid 2020.

Funding Area: Machine Learning
The addition of a machine learning component to gestur.a would allow users to map parameters
to gestures that they themselves could train the app into recognising. This would shift the
musical/control agency towards the composer, and away from myself, the system designer -
allowing them to be more expressive of their own musical ideas.

Funding Area: Sharing System
I have started thinking about a sharing system for gestur.a - a platform on the app for users to
share and rate other’s compositions. Users could export their live compositions in an infographic
style format which would include a selfie-cam video of themselves performing and a 3D
representation of their deviceMotion values as a form of graphical music score. In envisage this
becoming popular if it is implemented properly due to the comedic selfie-camera view while the
user is making their gestural music.

Fig.8 Stakeholder map for gestur.a

 Core ML model Core ML gestur.a

User-made gestures

Fig.9 Training gestur.a CoreML models

Funding Area: Instrument Research
I would like to publish findings from further user studies in the form of journal papers and by
attending conferences such as NIME (New Instruments for Musical Expression) and TEI (Tangled,
embedded, and embodied interaction) to disseminate this research. I have already started
coding interview responses using the grounded theory method for qualitative data analysis (see
Fig. 10) and have, through this, highlighted key areas of research including digital aesthetics,
feedback, and materiality. 

Fig.10 Using Nvivo 12 for
the grounded theory
research method

BIBLIOGRAPHY
Bolter, J. and Grusin, R. (2000). Remediation. Cambridge, Mass: MIT Press.

Du Cange, C. (1883). Glossarium mediae et infimae Latinitatis.

Heap, I. (2012). Mi.Mu Gloves. [online] MI·MU. Available at: https://mimugloves.com [Accessed 23
Oct. 2017].

Magnusson, T. (2019). Sonic Writing. Bloomsbury.

Manovich, L. (2001). The Language of New Media. Cambridge: MIT Press.

Moggridge, B. (2007). Designing Interactions. Cambridge, Mass.: MIT Press.

Ryan, J. (1991). Some remarks on musical instrument design at STEIM.

Suri, J. (2005). Thoughtless Acts?. San Francisco, Calif: Chronicle Books.

APPENDIX
1. HIERARCHY OF DESIGN

DISCIPLINES

